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Abstract

Item response theory (IRT) models have been used extensively to address
educational measurement and psychometric concerns pertaining to a host of areas
such as differential item functioning, equating and computer-adaptive testing.
The many advantages of IRT models (e.g., item aﬁd ability parameter invariarce),
have contributed to their use in a wide number of areas by practitioners and
researchers alike.

Another apprcach which is currently' gaining popularity in educational
measurement is the one that treats item response theory as a special case of
nonlinear factor analysis (NLFA). Several authors have shown that these mcdels
are mathematically equivalent (Balassiano & Ackerman, 1995a; 1995b; Goldstein &
Wood, 1989; Knol & Berger, 1991; McDonald, 1967; 1985; 1989; in press). It would
therefore appear reasonable to make use of NLFA models to examine a multitude of
educational measurement problems which had been, until quite recently, looked at
solely from an IRT perspective.

The purpose of this paper is twofold:

- First, to provide a brief overview of scme of the research that has
examined the relationship between IRT and NLFA;

- Second, to outline three NLFA models, emphasizing their major strengths and
weaknesses. More precisely, McDonald's (1967; 1982b) polynomial approximation to
a normal ogive model, Christoffersson's (1975)/ Muthén's (1984) factor analytic
model for dichotomous variables as well as Bock and Aitkin's (1981) /Bock, Gibbons
and Muraki's (1988) full-information factor analytic model, will be summarized.

Co
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Introduction

Over the past three decades, the educational measurement and
psychometric literatures have been replete with studies focusing on item
response theory (IRT) models. The numerous textbooks that have been written
centering primarily and, in some instances, exclusively on IRT attest to the
importance of these models in the development and analysis of tests and items
(Baker, 1992; Hambleton, 1983; 1989; Hambleton & Swaminathan; 1985; Hulin,
Drasgow, & Parsons, 1983, Warm, 1978). The use of IRT models has been
widespread in both testing orgamizations and departments of education for a
variety of purposes such as item analysis (Baker, 1985; Mislevy & Bock, 1990;
Wingersky, Patrick, & Lord, 1991; Thissen, 1993), score equating (Cook &
Eignor, 1983; Lord, 1977; 1980; 1982; Petersen, Kolen, & Hoover, 1989; Skaggs
& Lissitz, 1986), differential item functioning (Thissen, Steinberg, & Wainer,
1993) and computer adaptive testing (Hambleton, Zaal, & Pieters, 1993;
Kingsbury & Zara, 1991; Wainer et al., 1990), to name a few. The many
properties of IRT models, among them, that "sample-free" item parameter
estimates and "test-free" ability estimates can be obtained, have generated
considerable interest in their use to solve a host of measurement-related
problems.

Another approach which is currently gaining popularity in educational
measurement is the one that treats item response theorv as a special case of
nonlinear factor analysis (NLFA). Several authors have shown that these models
are mathematically equivalent (Balassiano & Ackerman, 1995a; 1995b; Goldstein
& Wood, 1989; Knol & Berger, 1991; McDonald, 1967; 1985; 1989; in press).
Muthén (1978, 1983, 1984) has also demonstrated that commonly used models in
IRT (e.g. the two-parameter normal ogive model) are really specific cases of a
more general factor analytic model for categorical variables with multiple
indicators (i.e. response categories). McDonald (1982b), starting from
Spearman's common factc model, also shows that IRT models are a special case

of NLFA and provides a general framework which includes unidimensional/
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multidimensional, linear/nonlinear models as well as dichotomous and
polychotomous models.

Takane and De Leeuw (1987) have also established that IRT models are
mathematically equivalent to NLFA. These authors have provided a systematic
series of proofs that show the equivalence of these models with dichotomous as
well as polychotomous item responses.

Thus, it appears as though IRT and NLFA models represent two equivalent
formulations of a more general latent trait model. Indeed, the two terms are
often used interchangeably. For example, the model proposed by Bock and Aitkin
(1981) has been synonymously referred to as full-information factor analysis
(Bock, Gibbons, & Muraki, 1988) and multidimensional IRT (McKinley, 1988).
Given the equivalence of IRT and NLFA, it would appear reasonable to make use
of the latter models to examine a multitude of educational measurement
problems which had been, until quite recently, looked at solely from an IRT
perspective. Several nonlinear factor analytic models, with potential
applications to measurement and psychometric issues, have been proposed in the
literature (Bock & Aitkin, 1981; Bock, Gibbons, & Muraki, 1988; Bock &
Lieberman, 1970; Christoffersson, 1975; McDonald, 1967; 1982b; Muthen, 1978;
1984) .

The first part of this paper will consist in providing a brief overview
of some of the research that has examined the relationship between common IRT
models and NLFA.

Three NLFA models that have been used to address measurement related
issues will be presented in the second part of this paper. Specifically,
McDonald's (1967; 1982b) polynomial approximation to a normal ogive model,
Christoffersson's (1975)/ Muthén's (1978) factor analytic model for
dichotomous variables as well as Bock and Aitkin's (1981) /Bock, Gibbons and
Muraki's (1988) full-information factor analytic model, will be summarized. In

addition, some of the strengths and weaknesses of the models will be
highlighted.

1
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The relationship between camnon IRT models
and ncnlinear factor analysis

A considerable body of research has been dedicated to examining the
relationship between common IRT models, e.g., logistic and normal ogive
functions, and NLFA (Bartnolomew, 1983; Goldstein & Wood, 1989; Knol & Berger,
1991; McDonald, 1967; 1989; Takane & De Leeuw, 1987).

Bartholomew (1983) has provided a general latent trait model cin which
several IRT as well as factor analytic functions for dichotomous variables are
founded. The author states that common factor analytic models, such as those
proposed by Bock and Aitkin (1981), Christoffersson (1975) and Muthen (1978)
are special cases of this general latent trait model. The model is of the

form,

G(“i(Y))Wio*i «;;H(y;), i=1,2...,p. (1)
=1
Bartholomew states that the models outlined by Bock and Aitkin (1981),
Christoffersson (1975) and Muthen (1978) use the probit function,
{G(u)=0*(u)} for both ¢ and H. Lord and Novick (1968), whose discussion on
IRT models is restricted to the g=1 (i.e., unidimensional) case, treat y;, as
parameters and use the logit for G and the probit for H. "Translated" in the ‘

unidimensional IRT vernacular, the terms in equation 1 would correspond to the

following:

G(my)= the response function outlining the probability c:
obtaining a correct response to itein i;

(y)= a vector of ability (in this case, a scalar, given
that g=1);

®y0= a parameter related to the difficulty of item i;

@y = a parameter related to the discrimination of item i .n
latent trait j;

H(yy) = The density function for a given latent trait j.
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Fraser and McDonald (1988) and McDonald (1981; in press) also examined
the relationship between common item response functions (IRF) and NLFA.

McDonald (1994) states that the unidimensional normal ogive model given by,

P(Y;=1[8,) =c;+(1-c;) Nla; (6;-b;) 1, (2)
‘ where,
5= the latent variable;
b; = the 8 value at the point of inflexion of the item
response function;
a; = the slope of the IRF at its point of inflexion;
c; = the lower asymptote value of the IRF;
N{.} = the normal distribution function;

can be re-expressed using the latent trait parameterization as,

with f,, = -a;b; and f;, = a;; f;; corresponding to the factor loading of factor

1 on item i. Function (3) can be generalized to the multidimensional case,
P(Y_i:l |Q) =Ci+(1—ci)N[fig+f_/iQ] . (4)

Fraser and McDonald (1988) and McDonald (1981; in press) also

demonstrated that the latent trait model shown in (4) could be derived (c.f.
Christoffersson, 1975) in the form,

P(i=118) =c;+(1-c;) N[ t;,+H 0/m;] . (5)

The parameters in m‘odels (4) and (5) are related by,
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=L/ (L+£ PE )2,
hy=f;/(1+£ PL )2,

2
mf =l/Si,

= /
s; = (L+£ PL )7,

where (i=1, ... , m) and P is the m x m matrix containing the correlations
among the dimensions (assuming the latent traits have been standardized). A
detailed discussion of this relationship is found in McDonald (1985).

Knol and Berger (1991) examined the relationship between several NLFA
models and logistic IRT functions. More precisely, the authors focused their
attention on comparing Bock and Aitkin's (1981) full-information factor
analytic model and McDonald's (1967) wolynomial approximation to a normal
ogive model, to the two-parameter logistic IRT function.

Bock and Aitkin's model (1981) uses a marginal maximum likelihood
procedure in the estimation of item parameters. In the model, X = (X, ...,
X,) ' corresponds to a random response pattern vector to n binary variables,
where each X;(i=1,...,n) value is defined as 1, if the item is correctly
answered and 0, if incorrectly answered. Under the assumption of local
independence, the marginal probability of the response vector X = x is given

by,

P(X=x) =f1‘__‘11 [p, (8) 1% [1-p, (B) ] g () db, (6)

where p; (6) corresponds to the item characteristic function of item i, g(8) is
the density function nf the latent m-component random vector of abilities 6,

and the integration is tak'n over the entire multidimensional ability space.
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Knol and Berger (1991) state that if 6 is assumed to be multivariate

normal distributed with a mean equal to 0 and a covariance matrix I, the
multidimensional two-parameter noxrmal ogive model ICF for item i (i=1,...,n)
is given by,

p;(0) =F(a’0-B,), (7)
where,
a; = the mx 1 vector of item discrimination parameters;
B: = the item difficulty parameter;

F(.)= the cumulative standard normal distribution.

Knol and Berger (1991) also examined the relationship between McDonald's
polynomial approximation to a normal ogive model (McDonald, 1967; 1982b) and
the two-parameter logistic IRT function. McDonald, using harmonic analysis,
proposed a NLFA model that is based on the pairwise joint-proportion of the
item responses. The ICFs for this model are approximated by a third degree
Hermite-Tchebycheff polynomial. The pairwise probabilities =;; = P(X;=1, X;=1)

are estimated by minimizing the unweighted least-squares function,

f(A/ﬁ)zzz [plj_ﬁlj(allﬁllajl BJ)]ZI (8)
i<
where,
A= (a,, ..., a,)', described in (7);
B= (B ..., B,)', also defined in (7)

pi; = the observed joint-proportions.
As Knol and Berger (1991) state, the relationship between the logistic
distribution function L(.) and the cumulative standard normal distribution

function F(.) given by (Mood, Graybill, & Boes, 1974),
|F(z)-L(1.72)|<.01 (9)

for all z (Haley, 1952), makes it possible to approximate the normal ogive ICF
by the logistic ICF,
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e(1.7(u§ej—[3,-)]

p;(0;) = = L[1.7 (a30;-B,)] . (10)

1+e[1.7(a§6,-[}1—)]
Takane and De ILeeuw (1987) also showed that common IRT models and NLFA
models are formally equivalent. These authors have provided a proof that
demonstrates the equivalence of Bock and Aitken's (1981) full-information
factor analytic model to Christoffersson's(1975) /Muthén's (1984) generalized
least-squares factor analytic model for dichotomous variables. This proof is

presented in 2ppendix A for the reader's benefit.

Summary

The purpose of the first part of the paper was to briefly outline past
research that has investigated the relationship between common IRT models and
NLFA. These studies have shown that logistic and normal ogive functions are
formally equivalent to McDonald's (1967; 1982b) polynomial approximation to a
normal ogive model, Christoffersson's (1975)/Mutnén's (1984) factor analytic
model for dichotomous variables, and the full-information factor analytic
approach advocated by Bock and Aitkin (1981) as well as Bock, Gibbons and
Muraki (1988). Hence, based on the IRT-NLFA relatioaship, it would appear that
these latter models might provide a useful framework with which common
measurement and psychometric problems can be addressed. A summary of these
three NLFA models is provided in “he next section of the paper, emphasizing

some of the advantages and limitations of each approach for the practitioner.

A polyncomial approximation to a normal ogive model
McDonald (1967; 1982a; 1982b, 1989; in press) and McDonald and Ahlawat
(1974) have provided a general framework that enables the organization of
existing unidimensional as well as multidimensional IRT models based on a more
general NLFA approach. Specifically, generalizing from Spearman's common

factor model, McDonald (1982b) has presented three classes of models which can

i0
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be used in educational measurement, that is,

i. models that are strictly linear in both their coefficients and
latent traits;

ii. wodels that are iinear in their coefficients but not in their
latent traits;

iii. models that are strictly nonlinear.

McDonald's distinctive contribution to the area, however, lies with the
second class of models presented. McDonald and Ahlawat (1974) have proposed a
group of regression functions that are linear in their coefficients (i.e.

their item parameters) but nonlinear in their latent traits, of the general

form,
t s
£i(%y, oo X)) =a;0*Y. Y @y h (x)  (i=1,...n), (11)
=1 p=2
where,
£(x,....%) = a function that represents the probability
that an examinee with latent trait values
Xi....,% will correctly respond to the
ith binary item;
&y = An intercept parameter of the regression
function for item 1;
ap = A regression coefficient for item i on
latent trait 1 of the p-th polynomial
degree;
h(x) = a general polynomial function of the form,

£i,0,4F,,0%+. . +F,05. (12)

An IRT model vhich describes the probability that a randomly selected
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examinee j of ability 6; will correctly answer an item _is the two-parameter
normal ogive model. The item characteristic curve (ICC) for the model is given

by,

Zi5

P (8;) = [ 1 e-t*/2de, (13)
| i

where t is the normal deviate. One common parameterization of Zy; for item i
is,

Z;5=a;(0;-b;), (14)
where b, and a; have been previously defined in (2). McDonald (1967), using

harmonic analysis, has shown that the normal ogive model could also be

approximated as closely as desired by a polynomial series of the general form,
Eiot£1,05+ L, 05+ £,05 (15) g

whe "e, f;, is the factor loading of factor k on item 1i.
The unweighted least squares (ULS) function that is minimized to enable

the estimation of the pairwise probabilities =;; = P(X;=1, X;=1) is,

f(A,B)'_‘ZE [pij_ﬂij(ailﬁilajlﬁj)]zl (16)
i<
with A, p and p;; previously defined in (7) and (8). As was stated earlier, ‘
the ICFs for this model are approximated by a third-degree Hermite-Tchebycheff %

polynomial. A few advantages and limitations of the model are presented in the
next section of the paper.

(8}
[
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As was previously stated, McDonald's (1967) approach to NLFA uses ULS

estimation of the model parameters. ULS estimation is quite economical as
compared to generalized least-squares and maximum likelihood procedures and
hence has the practical advantage of allowing for the analysis of tests with a
fairly large number of items and/or dimersions.

Also, McDonald's model has been implemented in the computer program
NCHARM (Fraser & McDonald, 1988). The program enables the user to fit
confirmatory or exploratory unidimensional and multidimensional models to item
response matrices. The output from a typical NOHARM run includes the results
for the latent trait parameterization, the common factor model
reparameterization as well as, in the unidimensional case, Lord's
parameterization (i.e., a vector of discrimination parameters, a, and
difficulty parameters, b, are provided). In addition, a residual joint-
proportions matrix is included in the output which can be useful to assess the
fit of a given model.

Rowever, the greater degree of computational efficiency associated with
the ULS estimation procedure is achieved at the sacrifice of information
(Mislevy, 1986). That is, only the information in the one-way marginals
(percent-corrects) and two-way marginals (joint percent-corrects) is utilized
by NOHARM in the estimation of parameters, thus explaining why it is often
referred to as a "limited" or "bivariate" factor analytic method. However,
McDonald (in press) and Muthen (1978) have suggested that one should not lose
too much information in the absence of higher-order marginals. Also, Knol and
Berger (1991) compared NOHARM parameter estimates to those obtained based on a
full-information factor analytic model (i.e., using TESTFACT; Wilson, Wood &
Gibbons, 1987) and generally found only slight differences between the two
procedures with respect to their ability in recovering (simulated) factor

analytic parameters. However, these findings were based on a limited numpber of
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replications (10) and should be interpreted cautiously. Nonetheless, from a
practical perspective, it would seem that there might not be much to be gained
in using full-information methods. Balassiano and Ackerman (1995b) have also
shown that the overall performance of NOHARM, with respect to recovering
‘simulated item parameter values, was satisfactory, even with small sample
sizes (N = 200).

Another limitation of the model, again attributable to the ULS
estimation procedure, is the absence of standard errors for the parameter
estimates and a fit statistic for the given model. However, McDonald (1994)
and Balassiano and Ackerman (1995b) have suggested criteria (e.g., the invexse
of the square root of the sample size) that may be used as approximate
standard errors for the parameters of the model. Also, two approximate y?2
statistics, based on the residuals obtained after fitting a NLFA (NOHARM)
model to an item response matrix, were proposed and investigated by De
Champlain (1992) and Gessaroli and De Champlain (1995). Results obtained with
a variety of simulated data sets showed that the approximate x2?2 statistics
were quite accurate in correctly determining the number of factors underlying
simulated item responses. This would suggest that these procedures might be
useful as practical guiaes for the assessment of model fit, even though they
are perhaps not the theoretically preferred statistics due to the ULS
estimatioﬁ method on which they're based. However, further research needs to
be undertaken in order to evaluate the behavior of these approximate x? in a
larger number of conditions before making any definite statements about their
usefulness.

Finally, some authors have ncot - 1 that a problem with McDonald's model is
the absence of an index that would indicate the appropriate number of
polynomials to retain in a series (Hambleton & Rovinelli, 1986). Findings
pertaining to this question, however, seem to indicate that terms beyond the

cubic can generally be dismissed (McDonald, 1982b, Nandakumar, 1991).
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A factor analytic model for dichotomcus variables
Christoffersson (1975) and Muthén (1978) proposed a factor analytic
model for dichotomous variables in which it is postulated that response
variables X; are accounted for by the latent continucus variables Y; and
threshold variables 4; such that, :
Xi = 1, if }’J_ > l.i
X; = 0, otherwise,
where, _
Y=A0+%, (17)
and ¥ = (¥, ... , Y)'. The model outlined in (29) is identical to the common
factor model with the exception that Y is uncbserved. Assuming that
6 ~ MVN(0,I), E ~ MVN(0,¥2), where T2 is a diagonal matrix of residual
variances, and cov(6,E) = 0, the covariance matrix E among the ¥ latent
variables can expressed as,
Y(Y) =ADA+Y. (18)
Therefore,
Y~MVN (0, ADA/+¥2) , (19)
The probability of a correct response based on Christoffersson's model is
given by,
L= = _1— _X2/2
P(y;=1) f Gy A, (20)
The probability of correctly answering a pair of items is given by,
_ _ _ 1 -x"8 x/2
P(y.,=1, Y.,=1) —f — = e P Xidx, (21)
’ ’ 2m|T M
J

Christoffersson (1975), using the tetrachoric expansion (Kendall, 1941) re-
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expresses (21) as,
P(y;=1, yj=1)=zoo§j T.(hy) T4(hy), (22)
s=

where t, is the s-th tetrachoric function. Given the rapid convergence of the
series, Christoffersson (1975) states that we may cut the expansion after L

terms and use,

a L-1
P(y;=1, y;=1)= zooij 1.(hy) 1, (hy) . (23)
o=

g

The parameters of Christoffersson's (1975) model can be estimated using
a generalized least-squares (GLS) estimation procedure that minimizes the fit

function,

F=(p-P)'s;*(p-P), (24)

where,

Se= a consistent estimator of Z., the residual covariance matrix;

P= a vector of expected item proportions correct P; and joint item
proportions Pj;

p= a vector of observed item proportions correct p; and joint item
proportions pj;
Muthén (1978; 1983; 1984; 1988) has proposed a GLS estimator that is

equivalent to that outlined by Christoffersson (1975) but computationally more

efficient. According to Muthén (1978), the parameters of the factor analytic

model for dichotomous variables can be estimated by minimizing the weighted

least-squares fit functicn,

F=—:2L (s-0) Wy (8-a) , (25)
where,
g= Population threshold and tetrachoric correlation values;
8= Sample estimates of the threshold and tetrachoric correlaticn
i)
V)
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values;
Wy= A consistent estimator of the asymptotic covariance matrix of s,
multiplied by the total sample size.

This approach, also referred to as GLS estimation using a full-weight
matrix approach (Muthén, 1988), is asymptotically equivalent to
Christoffersson's solution and slightly less demanding in terms of
computational requirements. It is referred to as a full-weight matrix approach
because, as Muthén (1988) states, the GLS estimator utilizes a weight matrix

of size p* x p*, where p* corresponds to the total number of elements in the s

vector.

The GLS estimation procedure, unlike ULS, utilizes not only terms from
the one-way and two-way margins but also from the three-way and four-way
margins, that is, the joint proportions correct for three and four items taken
at the same time. As Mislevy (1986) states, the use of a greater amount of
information in the estimation procedure is especially advantageous when one
attempts to extract more from the data, that is, with solutions that contain
fewer items, examinees or more factors (with other conditions held constant).

Also, statistical tests of model fit are readily available. The F
function minimized in the GLS solution (c.f. equations 33 + 34) asymptotically
follows a chi-square distribution, with df = k(k-1)/2 - t, where k is equal to
the number of items and t, the number of parameters estimated in the model. In
addition, standard errors for the parameters estimated in the model car. be
obtained quite easily.

Finally, Muthén's solution is incorporated in the computer program
LISCOMP (Muthén, 1988). As was the case with NOHARM (Fraser & McDonald, 1988),
LISCOMP (Muthén, 1988) enables the user to fit both exploratory and

confirmatory unidimersional or multidimensional models. Also, the output from
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a typical LISCOMP run contains the common factor model parameter estimates and
standard errors as well as a residual correlation matrix and a chi-square
statistic which allows the user to assess the degree of fit of a given model
or competing models.

However, the GLS estimation is computationallv very intensive. Although
Muthén's (1978) solution is more efficient than Christoffersson's (1978), the
procedure, as implemented in LISCOMP {(Muthén, 1988), is still impractical
using a personal computer with tests containing more than 25 items (Mislevy,
1986; Muthén, 1988).

Also, though GLS makes use of more information to fit the ore- and two-
way margins than does ULS, it still ignores higher level interactions and, in
that sense, does not fullv utilize all of the available information. However,
as was the case for ULS estimation, it is quite possible that this loss of

information is inconsequent.ial.

Full-information item factor analysis

Bock and Aitkin (1981) proposed, based on the following m-factor model
(for dichotomous data),

yjizkizeu'*kizezj/ N § emj+8jjl (26)

im

that an unobservable response process Y;; for person j to item i is a linear
function of m normally distributed latent variables 6, = (615, 655, ..., 04yl
and factor loadings Ay = [4;, 42, ..., 4;]. This latent response process, Yii
is related to the binary (cbserved) item response x;; through a threshold
parameter, y; for item i, in the following fashion:

if yy; 2 v then x;; = 1,

if yy; < v; then x;; = 0.

The probability that examinee j with abilities 6, = (015, 65, ..., 045l

will correctly answer item i is g'iven by the function,

| SO
Sp)
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P(in=1|ej) =‘I)(Yj—§llikekj / 01-) ' (27)

where ¢ corresponds to unit normal cumulative distribution and o; is the
standard deviation of the uncbserved random variable e;; ~ N(0,0%;).

Bock and Aitkin {(1981) proposed a marginal maximum likelihood (MML)
procedure to estimate the parameters in the model based on Dempster, Laird and
Rubin's (1977) EM algorithm. The threshold and factor loadings are estimated

so as to maximize the following function,
N1 ~Iy ~Ip ~Ig

L =P(X)= b, , P .., P 28
n=P () PNV rest (28)

where, r, is the frequency of response pattern s and P, is the marginal
probability of the response pattern b sed on the item parameter estimates. The
function outlined in (27), with the MML parameter estimates by means of the EM
algorithm, is commonly referred to as full-information item factor analysis
(Bock, Muraki, & Gibbons, 1988) and has been implemented in the computer
program TESTFACT (Wilson, Wood, & Gibbons. 1987).

Advantages and limitations of Bock and Aitkin's (1981) / Bock, Gibbons and
Ki's (1988) full-inf . . £ lvej

One of the key advantages of full-information item factor analysis
(FIFA) is that it utilizes all available information in the estimation
procedure. Contrary to the two least-squares models previously outlined, which
aré restricted to lower-order marginals, FIFA is based on the estimation of
item response vectors and hence uses all available information in the data.

Also, the procedure is implemented in the computer program TESTFACT
(Wilson, Wood, & Gibbons, 1987). The output from a TESTFACT analysis contains,
among other things, classical item statistics and factor analytic parameter
estimates as well as their associated standard errors. In addition, a

likelihood-ratio chi-square test is provided to help the user determine the
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fit of a wedel, or of competing models.

However, the use of all information contained in the 2P item vectors,
where p is equal to the nunber of items, by FIFA requires that there should be
no empty cells which is usually not feasible unless some collapsing is done.
In addition, as Mislevy (1986) and Berger & Knol (1990) have noted, the G?
goodness-of -fit statistic computed by TESTFACT will be very unreliable with
data sets containing more than 10 items due to the small expected number of
examinees per cell. More precisely, Mislevy (1986) states that the
approximation to the chi-square distribution might be poor in this instance.
Wilson, Wood and Gibbons (1987) also caution against relying on the G2 fit
statistic when a large number of cells have expected frequencies near zero. In
that instance, the authors recommend using the G? difference test (comparing
two specific models) given that it follows a chi-square distribution in large

samples, even in the presence of & sparse frequency table.

Conslusion

IRT models have been used extensively in the past few decades not only
in the development and analysis of educational test items but also in a host
of other applications such as for the equating of alternate test forms and the
detection of differentially functioning items.

Several researchers have suggested, however, that common IRT models are
really specific cases of a more gerieral NLFA model (Goldstein & Wood, 1989;
Knol & Berger, 1991; McDonald, 1967; in press; Takane & De Leeuw, 1987). The
research conducted by the latter authors clearly shows that familiar IRT
models, such as the normal ogive and logistic functions, can easily be
expressed with a factor analytic parameterization. The findings obtained in
these studies would therefore seem to suggest that NLFA might provide a useful
framework with which to address measurement-related issues that had been
primarily investigated using IRT models.

Three factor analytic models were briefly outlinec. More precisely,
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McDonald's (1967; 1982b) polynomial approximation to a normal ogive model,
Christoffersson's (1975)/Muthén's (1978) factor analysis model for dichotomous
variables and Bock and Aitkin's (1981)/Bock, Gibbons & Muraki's (1988) full-
information factor analytic model, were described. In addition, the major
strengths and weaknesses of each model were delineated. Based on this
information, are there any conditions that might dictate the use of one model
over another?

The main advantage associated with McDonald's polynomial approximation
to a normal ogive model, that is, the relative economy of the ULS estimator,
also constitutes its primary shortcoming.- In other words, as Mislevy (1986)
stated, the higher degree of computational efficiency is achieved at the
sacrifice of information. The model utilizes lower-order marginals in the
estimation process and consequently ignoreé higher-order relationships among
the data. However, there is some empirical evidence to suggest that "limited-
information" factor analytic parameter estimates do ncot differ substantially
from those obtained using the theoretically sounder "full-information" method
as implemented in the computer program TESTFACT (Wilson, Wood, & Gibbons,
1987; Knol & Bexger, 1991).

Also, the absence of standard errors for the estimated factor analytic
parameters and of a fit statistic to gauge the overall adequacy of a model,
are major disadvantages of McDonald's model, as implemented in the computer
program NOHARM (Fraser & McDonald, 1988). Nonetheless, approxime _: standard
errors have been proposed as useful guides in assessing parameter estimation
accuracy (Balassiano & Ackerman, 1995b; McDonald, 1994). Also, two approximate
chi-square statistics, based on the residual matrix obtained after fitting an
m-factor model to an item response matrix using NOHARM (Fraser & McDonald,
1988) proved to be very accurate with respect to correctly identifying the
number of dimensions underlying simulated data sets in specific conditions. Of
course, these chi-square statistics are weak in their theoretical foundation

due to the fact that they're based on ULS estimation. However, Browne (1977)
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has indicated that in many cases, these chi-square statistics are formally
equivalent to those derived from a GLS estimation and that they differ only
slightly. Therefore, from a practical perspective, these approximate chi-
square statistics might be useful tools to those interested in fitting
McDonald's model to item response matrices.

The factor analytic model for dichotomous variables proposed by
Christoffersson (1975) and amended by Muthén (1978) is, from a theoretical
standpoint, superior to McDonald's approach in that the GLS estimation
procedure yields a valid chi-square goodness-of-fit statistic as well as
legitimate standard errors for the estimated parameters. Nonetheless, the
model is still based on "limited information" in that it ignores higher-level
interactions in the data. Also, the computational requirements of Muthén's GLS
solution as implemented in LISCOMP (Muthén, 1988) are quite exacting: they
increase proportionally to the number of factors and with the fourth power of
the number of items. This led Mislevy (1986) to suggest that Muthén' solution
might be adopted with tests that have a relatively small item to factor ratio.

Finally, the full-information factor analytic model proposed by Bock and
Aitkin (1981) and Bock, Gibbcns, an Muraki (1988) is, based on theoretical
grounds, the strongest of the approaches outlined, given that it does, as the
name implies, wmake use of all available information contained in the 2P item
response vectors. However, in most applications, the use of the full-
information is usually not feasible unless collapsing of cells is undertaken.
Also, the computational requirements associated with the MML estimation
procedure implemented in TESTFACT, increase geometri ally with the number of
factors specified in the model but only linearly with the number of items and
response vectors. Hence, Mislevy (1986) advises using this procedure with
longer tests and more parsimonious models.

In summary, it would appear as though a greater number of empirical
studies should be undertaken to compare the various NIFA models with respect

to how accurately they can recover simulated parameter values, before making
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any definite recommendations as to which procedure should be favored given a
specific set of conditions, i.e., test length, sample size, factor model, etc.
It is possible that the theoretically sounder models, e.g., full-information
factor analysis, might not yield substantially wmore accurate parameter
estimates than methods that are based on lower-order marginals, e.g.,
McDonald's (1967; 1982b) and Muthén's (1978; 1988) approaches. There is some
preliminary evidence to support this claim (Boulet & Gessarcli, 1992; Gibbons,
1984; Knol & Berger, 1991). Some authors have even suggested that factor
loadings obtained from a linear factor analysis of phi and tetrachoric
correlation matrices did not differ noticeably from those derived using
LISCOMP (Muthén, 1988; Parry & McArdle, 1991) or TESTFACT (Wilson, Wocd, &
Gibbons, 1987; Knol & Berger, 1991). However, more studies are needed in this
area to clearly identify the conditions in which one method might outperform
another.

In addition, the usefulness of these models in addressing common
measurement-related problems should be investigated. For example, LISCOMP
(Muthén, 1988) and TESTFACT (Wilson, Wood, & Gibbons, 1987) provide chi-square
goodness-of-fit statistics in order to aid the practitioner in determining
which model best accounts for the item response probabilities. Also, similar
fit statistics have been proposed to accompany McDonald's (1967; 1982b) NLFA
model (De Champlain, 1992; Gesaroli & De Champlain, 1995). Given that
unidimensionality of the latent ability space is one of the main postulates
underlying most IRT models, it would seem important to evaluate the degree of
accuracy with which each of these fit statistics is able to correctly identify
or reject this assumption under a variety of simulated conditions. Similarly,
it might be interesting to assess the degree of effectiveness of these fit
statistics in detecting viclation of local independence. A frequent problem
that confronts practitioners is how to best model item response data that
contain sets that is, where several items refer to a common stem, e.g., a

reading comprehension passage. The factor analytic framework might provide the
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means of effectively dealing with local item dependence through items loading
on a secondary dimension, for example. The usefulness of the NLFA framework in

addressing these types of issues will be illustrated in the next three

presentations of this symposium.

. £ t] ] . esentati

The firsc paper will be centered on cutlining methods available for the
assessment of dimensionality that are based on NLFA. Examples of how to use
these procedures to test for specific dimensional structures will be
illustrated using data from a national testing program.

The next paper will compare the degree of accuracy of parameter
estimates when based on "limited-information" (NOHARM) and "full-information"
(TESTFACT) factor analytic models for simulated unidimensional and
multidimensional data sets. In acddition, the use of these methods will be
depicted with actual achievement test data.

The final paper will focus on explaining how the factor analytic
framework might be useful in dealing with local item dependence (LID).
Specifically, the identification of LID using NLFA will once more be
illustrated with data from a national testing program. Also, methods of
ocaining "purified" estimates of reliability and standard errors of
measurement as well as ability (i.e., withcut LID contamination) will be
outlined.

It is hoped that these presentations will underscore the usefulness of
NLFA in addressing the above mentioned problems with actual achievement test

data and stimulate discussion with respect to these areas, thus hopefully

fostering future research.
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Appendix A
Takane and De Leeuw's (1987} IRT-NLFA proof
let x = (%X, ...,X,) be a random vector of response patterns to n binary

items on a test. Each X; is assigned a value of 1, if the examinee correctly
answers the iﬁem, or 0, if there is an incorrect respconse. Let 4 be an m-
component random vector of abilities (msn) with its density function denoted
by g(u). @ is unobservable directly, but is assumed to follow a multivariate
normal distribution with mean 0 and covariance I (identity matrix); that is 4
~ N(0, (I}). The comain of @i (denoted by U) is the multidimensional region
defired by the direct product of (-e«,«). In IRT, the two-parameter normal
ogiye model specifies the marginal probability that x = x (Bock & Aitkin,
1981; Bock & Lieberman, 1970) as,

Pr(ﬁ=x)=jiPr(2=x1u)g(u)du, (29)
v .

where Pr(x=x|u) is the conditional probability of observing response pattern x

given 4 = u. Also, it is assumed that,

Pr (#&=x|u) =[] (p; (w))* (1-p; (w)) 1™, (30)

(that is, local independence) with,

-00

p;(w =[ 4P (2) dz=@ (a'u+b) , (31)

where ¢ is the density function of the standard normal distribution and &, the
normal ogive function (i.e., the cumulative distribution function of the
standard normal distribution).

On the other hand, Takane and De lLeeuw (1987) state that in the factor
analytic model proposed by Christoffersson (1975), the marginal probability of

response pattern x is specified as,
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Pr(%=x) =[ h(y) dy, » (32)
R
where R is the multidimensional region of integration and
y=cii+é. (33)

Equation 15 corresponds to the common factor analytic model with C being
the matrix of factor loadings, , the vector of factor scores (abilities in an
IRT framework) and &, the random vector of uniqueness components distributed
as N(0,Q2?) where Q2 is further assumed to be diagonal (linear local

independence), and 4 and & are independent of each other. It follows that,
¥~n(0, cc’+0?%), (34)

(marginal distribution of y) and

J‘;'lu~N(Cul QZ)I (35)

(conditional distribution of ¥ given { = u). The continuocus random variables,
¥ are dichotomized by X, = 1, if yl > ryor X =0, if y, < ry for 1i=1,...,n,
where r; is the threshold parameter for variable i. Therefore, R, the region
of integration above, is the multidimensional parallelopiped defined by the
direct product of intervals, R, = (rj,~) if %=1 and R;=(-«,1r;) if %X, = 0. Now
(11) including (12) and (13) is equivalent to (14) with y defined in (15). We
first prove that (14) - (11). The authors show that from (14) we have

Pr (#=x) =fh.(y) dy
R
=f (f £(y|v) g(u) du) dy
R u
=[ g(w) ([ £(#|w) dy) du, (36)
u R

where f(y|u) is the conditional density of y given G=u. But because of (17),
it can be shown that,
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[fiwdy=T] [ £, (y;lwdy,
R { Ry
=TI (£ rslw dyy) (2= £, (v u) dyy) P, (37)
i I; Iy
where,
) clu-r,
[ £ yilw dy=@ (=), (38)
Iy i
for i = 1,...,n. In this instance g2 is the i-th diagonal element of Q2.
Equation (19) is thus equivalent to (13) by setting
a;=—1 (39)
d;
and
by=-—1 (40)
qd;
for i = 1,...,n.
Takane and De Leeuw (1987) state that it might appear as though factor
analysis with ¢, r; and g;(i=1,...,n) has more parameters than IRT with only
a and b, (i=1,...n). However, according to the authors, when the data are

dichotomous, the variance of y; cannot be estimated due to the lack of

relevant information in the data, and thus, g can be set to an arbitraxry

value. Hence, the effective number of parameters is identical in both models.

In conclusion, the authors mention that the equivalence of marginal
psobabilities in IRT and FA models holds approximately with logistic (IRT)
models also, as long the logistic distribution provides a good approximation

of the normal distribution (i.e. normal ogive).




